

全国订货电话 4008-723-722

CRYGS 抗原(重组蛋白)

- 中文名称: CRYGS 抗原(重组蛋白)
- 英文名称: CRYGS Antigen (Recombinant Protein)
- 别名: CRYG8; CTRCT20
- 储存: 冷冻 (-20℃)
- 相关类别: 抗原

概述

Full length fusion protein

技术规格

Full name:	crystallin gamma S
Synonyms:	CRYG8; CTRCT20
Swissprot:	P22914
Gene Accession:	BC069478
Purity:	>85%, as determined by Coomassie blue stained SDS-P AGE
Expression system:	Escherichia coli
Tags:	His tag C-Terminus, GST tag N-Terminus
Background:	Crystallins are separated into two classes: taxon-specific, or enzyme, and ubiquitous. The latter class constitutes t he major proteins of vertebrate eye lens and maintains the transparency and refractive index of the lens. Since lens central fiber cells lose their nuclei during developm ent, these crystallins are made and then retained throu ghout life, making them extremely stable proteins. Mam malian lens crystallins are divided into alpha, beta, and gamma families; beta and gamma crystallins are also co

全国订货电话 4008-723-722

nsidered as a superfamily. Alpha and beta families are f urther divided into acidic and basic groups. Seven prote in regions exist in crystallins: four homologous motifs, a connecting peptide, and N- and C-terminal extensions. Gamma-crystallins are a homogeneous group of highly symmetrical, monomeric proteins typically lacking conne cting peptides and terminal extensions. They are differe ntially regulated after early development. This gene enc odes a protein initially considered to be a beta-crystalli n but the encoded protein is monomeric and has great er sequence similarity to other gamma-crystallins. This g ene encodes the most significant gamma-crystallin in a dult eye lens tissue. Whether due to aging or mutation s in specific genes, gamma-crystallins have been involve d in cataract formation.